

澳門理工大學 Universidade Politécnica de Macau Macao Polytechnic University

FACULTY OF APPLIED SCIENCES MASTER OF SCIENCE IN BIG DATA AND INTERNET OF THINGS LEARNING MODULE OUTLINE

Academic Year	2023/2024	Semester	1
Module Code	COMP6111		
Learning Module	Optimization Methods		
Pre-requisite(s)	Nil		
Medium of Instruction	English		
Credits	3	Contact Hours	45 hrs
Instructor	Dr. Amang Kim	Email	amang@mpu.edu.mo
Office	A320	Office Phone	8599.6455

MODULE DESCRIPTION

This module introduces the principal algorithms for linear, network, discrete, stochastic, system and process optimizations. Emphasis is on methodology and the underlying mathematical structures. Topics include the calculus, LP (Linear Programming), simplex method, network flow, game theory, queueing theory, system engineering and process optimization.

MODULE INTENDED LEARNING OUTCOMES (ILOS)

On completion of this learning module, students will be able to:

N/1	Choose the mathematical cores for optimization and apply the related mathematical models for
1111.	various optimization techniques. (AHEP4-M1, AHEP4-M2)
N/2	Determine the problems typically encountered in each aspect of operations research and
IVIZ.	optimizations in various perspectives. (AHEP-M3)
M3.	Interpret various optimization methods to solve real-world situations. (AHEP4-M3, AHEP4-M16)
	Recommend the practical solutions for various optimization matters and the importance to the
M4.	profession of applying mathematical and statistical tools with programming implementations.
	(AHEP-M5)

These ILOs aims to enable students to attain the following Programme Intended Learning Outcomes (PILOs):

PILOS		M1	M2	M3	M4	M5	M6
P1.	Master the principles of system engineering and relevant						
	enabling technologies for building of IoT solutions						
P2.	Critically evaluate scientific methodologies and	1					
	mathematical models for Big Data and its applications	v					

澳門理工大學 Universidade Politécnica de Macau Macao Polytechnic University

P3.	Master the advanced software and programming tools					
	and techniques for IoT solutions and Big Data					
P4.	Explain the processes involved in IoT solutions and Big					
	Data analytics in a typical business setting					
Ρ5.	Explain different application domains and analyze their					
	requirements for IoT and Big Data					
P6.	Apply knowledge in advanced communication and					
	multimedia technologies for the design and					
	implementation of IoT solutions					
P7.	Apply knowledge in applied statistics, machine learning,					
	leading-edge technologies and programming techniques	\checkmark	\checkmark			
	for Big Data					
P8.	Design and carry out an advanced project following an			1		
	ethical and professional methodology			•		
P9.	To demonstrate advanced knowledge and R&D techniques				1	
	in Big Data and IoT				•	
P10.	To investigate and develop new, emerging ICT technology					
	for Big Data and IoT					
P11.	To develop a global vision on the critical development and					
	new application of Big Data and IoT					
P12.	To communicate technically and effectively in both				1	
	speaking and writing				•	
P13.	To have a positive attitude towards society and the			1		
	environment.			v		
P14.	To adhere to high moral standards and commit to					
	excellence in life-long learning.					

MODULE SCHEDULE, COVERAGE AND STUDY LOAD

Week	Content Coverage	Contact Hours
1	1. Introduction and Calculus	3
	1.1. Module introduction	
	1.2. Calculus basics	
	1.3. Calculus optimization	
2-4	2. Linear Programming (LP)	9
	2.1. Linear programming basics	
	2.2. Simplex method	
	2.3. Network flow	
5-7	3. Game Theory	9
	3.1. Game theory basics	
	3.2. Duel games	

澳門理工大學 Universidade Politécnica de Macau Macao Polytechnic University

	3.3. Game optimization	
8-10	4. Process Analysis	9
	4.1. Process & System	
	4.2. Process basics	
	4.3. Process optimization	
11-13	5. Stochastic Process	9
	51. Birth-death process	
	5.2. Poisson process	
	5.3. Queueing theory	
	5.4. Stochastic optimization	
14-15	6. Programming Implementation	6
	6.1. Simulation Introduction	
	6.2. Calculus simulation	
	6.3. LP implementation	
	6.4. Process simulation	
	6.5. Queueing theory implementation	

TEACHING AND LEARNING ACTIVITIES

In this learning module, students will work towards attaining the ILOs through the following teaching and learning activities:

Teaching and Learning Activities		M2	М3	M4	M5	M6
T1. Class teaching and lecture	\checkmark	\checkmark		\checkmark		
T2. Group activity			\checkmark			
T3. Literature review				\checkmark		
T4. Tests	\checkmark	\checkmark	\checkmark			

ATTENDANCE

Attendance requirements are governed by the Academic Regulations Governing Master's Degree Programmes of the Macao Polytechnic University. Students who do not meet the attendance requirements for the learning module shall be awarded an 'F' grade.

ASSESSMENT

In this learning module, students are required to complete the following assessment activities:

Assessment Activities	Weighting (%)	AHEP4 LOs	ILOs to be Assessed
A1. Popup quiz	5%	AHEP4-M1, AHEP4-M3,	P2, P7, P9
A2. Group project	15%	AHEP4-M5, AHEP4-M16,	P13
A3. Assignment (x2)	20%	AHEP4-M1, AHEP4-M2,	P12
A4. Tests (x2)	60%	AHEP4-M1, AHEP4-M2, AHEP4-M3	P2, P7, P8

The assessment will be conducted following the University's Assessment Strategy (see <u>www.mpu.edu.mo/teaching_learning/en/assessment_strategy.php</u>). Passing this learning module indicates that students will have attained the ILOs of this learning module and thus acquired its credits. Students with an overall score of less than 35 in the coursework will fail the module even if the overall score for the module is 50 or above.

Students with a score of less than 35 in the final examination will fail the module even if the overall score for the module is 50 or above.

REQUIRED READINGS

1. Frederick S. Hillier, Gerald J. Lieberman (2014), Introduction to Operations Research, 10th Ed. McGraw-Hill, 978-0073523453

REFERENCES

- 1. George B. Thomas, Ross L. Finney (1998). Calculus and Analytic Geometry, 9th Ed. Addison Wesley, 978-0201531749
- 2. Allen A. (1990). Probability, statistics, and queueing theory with computer science applications, 2nd Ed, AP. 978-0120510511
- 3. L. Mark (2013). Learning Python 5th Ed, O'Reilly Media. 978-1449355739

STUDENT FEEDBACK

At the end of every semester, students are invited to provide feedback on the learning module and the teaching arrangement through questionnaires. Your feedback is valuable for instructors to enhance the module and its delivery for future students. The instructor and programme coordinators will consider all feedback and respond with actions formally in the annual programme review.

ACADEMIC INTEGRITY

The Macao Polytechnic University requires students to have full commitment to academic integrity when engaging in research and academic activities. Violations of academic integrity, which include but are not limited to plagiarism, collusion, fabrication or falsification, repeated use of assignments and cheating in examinations, are considered as serious academic offenses and may lead to disciplinary actions. Students should read the relevant regulations and guidelines in the Student Handbook which is distributed upon the admission into the University, a copy of which can also be found at www.mpu.edu.mo/student_handbook/.