Macao Polytechnic University

Faculty of Applied Sciences

Bachelor of Science in Computing

Module Outline

Academic Year <u>2022 / 2023</u> Semester <u>1</u>

Learning Module	Essential Computer Mathematics			Class Code	MATH111		
Pre-requisite(s)	Nil						
Medium of Instruction	English			Credit	3		
Lecture Hours	45 hrs	Lab/Practice Hours	0 hrs	Total Hours	45 hrs		
Instructor	Dr. Charles Lam		E-mail	cklamsta@mpu.edu.mo			
Office	Rm.N46B, Wui Chi Building., Main Campus		Telephone	8599-6823			

Description

This module is an introduction to mathematical topics related to computer and information sciences. Topics include exponents and radicals, sequences and series, sets, functions, limits, continuity, matrices, binary number system, octal number system, hexadecimal number system, computer arithmetic, Boolean algebra and logic gates, and minimization of logic circuits.

Learning Outcomes

After completing the learning module, students will be able to:

- 1. Summarize the fundamentals in algebra including exponents and radicals, sequences and series; (SM2p, EA3p)
- 2. Explain set operations; (SM2p, EA3p)
- 3. Classify and manipulate with functions; (SM2p, EA3p)
- 4. Show matrix computations; (SM2p, EA3p)
- 5. Explain the numerical and computational concepts and procedures among different number systems (binary, octal, decimal, hexadecimal); (SM2p, EA3p)
- Draw electronic circuit using logical gates and simplify electronic circuits using Karnaugh maps. (D4p)

Content

1.	Revi	iew of Algebra	(3 hours)
	1.1	Real number system	
	1.2	Exponents and radicals	
	1.3	Sequences and series	
2.	Sets		(4.5 hours)
	2.1	Special sets	
	2.2	Venn diagrams	
	2.3	Set operations	
3.	Matl	nematical Functions	(6 hours)
	3.1	Domain and range	
	3.2	Types of functions	
	3.3	Limits and Continuity	
	3.4	Graphical representation of functions	
4.	Matı	rix Algebra	(4.5 hours)
	4.1	Matrix operations	
	4.2	Determinant	
	4.3	Inverse	
5.	Binary Number System		(6 hours)
	5.1	Decimal and binary systems	
	5.2	Binary operations	
	5.3	Complements	
6.	Octal and Hexadecimal Number Systems		(6 hours)
	6.1	Number systems	
	6.2	Octal system	
	6.3	Hexadecimal system	
7.	Computer Arithmetic		(6 hours)
	7.1	Exponential form	
	7.2	Internal representation	
	7.3	Computer arithmetic	
8.	Boolean Algebra and Logic Gates		(4.5 hours)
	8.1	Boolean algebra	
	8.2	Basic theorems	
	8.3	Boolean expressions	
	8.4	Logic gates and circuits	
9.	Mini	imization of Logic Circuits	(4.5 hours)
	9.1	Minimal boolean expressions	
	9.2	Karnaugh maps	

Teaching Method

Lectures and tutorials

Attendance

Attendance requirements are governed by the "Academic Regulations Governing Bachelor's Degree Programmes" of Macao Polytechnic University. Students who do not meet the attendance requirements for the module will not be permitted to sit the final or re-sit examination and shall be awarded an 'F' grade.

Assessment

This learning module is graded on a 100 point scale, with 100 being the highest possible score and 50 being the passing score.

	Item	Description	AHEP3 LO	Percentage
1.	Assignments / Classwork	Home- / Classroom-based exercises	SM2p, EA3p, D4p	10%
2.	Tests	Knowledge assessment	SM2p, EA3p, D4p	40%
3.	Examination	3-hour written examination	SM2p, EA3p, D4p	50%
			Total Percentage:	100%

Students with an overall score of less than 35 in the coursework must take the re-sit examination even if the overall score for the module is 50 or above.

Students with a score of less than 35 in the final examination must take the re-sit examination even if the overall score for the module is 50 or above.

Students with an overall final grade of less than 35 are NOT allowed to take the re-sit examination.

Teaching Material

Textbook(s)

There is no official text for this module. Module notes are distributed in the class.

Reference

Reference book(s)

- 1. Cook, N. (2003). *Introductory Computer Mathematics* (2nd ed.). Pearson Education.
- 2. Lipschutz, S. (1987). Essential Computer Mathematics. McGraw-Hill.